Probability is of the study of calculating of the chances an event may occur (does not imply an event will occur)

For a die, it is common knowledge that it has six sides, and you are just as likely to roll each side of equal chance. So

$$
P(1)=\frac{1}{6}, P(2)=\frac{1}{6}, \ldots, P(6)=\frac{1}{6}
$$

Does that mean that when you roll a die 6 times you will roll all six numbers?

Experiment- Roll a die six times and record any numbers that were missing from the list you got.

Roll a die six times and record the results. Identify any number that did not show up in the set.

What is the actual probability of rolling a die and getting all six numbers in six rolls.

First Roll- Can be any of the 6 numbers
Second Roll- Can be any of the 5 numbers that did not occur in the $1^{\text {st }}$ roll
Third Roll- Can be any of the 4 numbers that had not occurred previously
...
Sixth Roll- can only be the roll of the left over number

What is the actually probability of this event.

Since the die are independent, there are 6^{6} possible outcomes
The first roll can be 6 possible outcomes, second roll can be 5 possible outcomes, third roll 4, fourth 3 ,fifth 2 , and sixth 1 . All six numbers will appear in six rolls a total of 6 ! Possible ways.

Calculate, what is

What was the percentage? So are you likely to roll all six numbers is six rolls?

Is a family of two always have a boy or a girl

Every time you flip a coin and get heads does that mean the second flip will be tails.

Probability doesn't say that you after 6 rolls you will get all six numbers, it says that for this one event, there is a $1 / 6$ chance that the number may appear in one procedure.

Recap

Vocab-
An event is any collection of results or outcomes of a procedure
A simple event is an outcome or event that cannot be broken down further
A sample space for a procedure consists of all possible simple events. That is the sample space consists of all possible outcomes that cannot be broken down further.

Relative Frequency Approximation of Probability- Conduct or observe a procedure and count the number of times event A occurs

$$
P(A)=\frac{\text { number of times event } A \text { occured }}{\text { sumber of times procedure was repeated }}
$$

Classical Approach to Probability (Requires equally likely outcomes)- Assumes that a given procedure was n different possible outcomes with equal chance of occurring

$$
P(A)=\frac{\text { number of ways A occur }}{\text { number of simples events }}=\frac{s}{n}
$$

Subjective probability- $P(A)$, the probability event A, is estimated by using knowledge of the relevant circumstances

Law of Large numbers- As a procedure is repeated many times, the relative frequency probability of an event tends to approach the actual probability

Unlikely- An event is unlikely if it's probability is very small, such as .05 or less.

Unusually high/low number- When the outcomes is far for what was expected (ch 5 will go more indepth)

Compound Event- Any event combining two or more simple events. (or events)

Disjoint Events (mutually exclusive)- Event A and B can not occur at the same time

Complement- If A is an event, then not A is \bar{A}

Properties of Complements-

$$
\begin{aligned}
& P(A)+P(\bar{A})=1 \\
& P(A)=1-P(\bar{A}) \\
& P(\bar{A})=1-P(A)
\end{aligned}
$$

"And" Events- Usually involve multiplication

Independent Events- When two event A and B are independent, then the occurrence of event A doesn't effect B and the occurrence of event B does not effect A. Below is the equation for independent events

$$
P(A \text { and } B)=P(A) P(B)
$$

For large population when finding the probability of a small portion of the population you may treat the events as independent.

At least one event- If an event occurs at least once in N trails. To calculate the P ("at least once"), you would need to find the probability of $\mathrm{P}(1$ or 2 or.... N$)$, but it would take too long.

Instead use the complement rule. The complement is "not at least one time" or simply it never happens in N trials. It is easier to calculate and you get the following.

$$
\begin{aligned}
& P(A)=1-P(\bar{A}) \\
& P(\text { "event happnes at least onces" })=1-P(\text { "event happnes at least onces" }) \\
& P(\text { "event happnes at least onces" })=1-P(\text { "event never hapens in } N \text { trials") }
\end{aligned}
$$

Conditional Events- Event B taken into consideration that event A has already happened

Fundamental Counting Rule- Number of ways two events can occur, given that the first event can happen m ways and the second event can happen n way, is calculated my mn .

Factorial Rule- n != Number of different permutation (order matters!) that n different items can be selected n times (all items are selected.

Permutation Rule- ${ }_{\boldsymbol{n}} \boldsymbol{P}_{\boldsymbol{r}}=\frac{\boldsymbol{n !}}{(\boldsymbol{n}-\boldsymbol{r})!}$, when you have n different items and you only select r . (Order matters)

Combination Rule- ${ }_{n} \boldsymbol{C}_{\boldsymbol{r}}=\frac{n!}{(n-r)!r!^{\prime}}$, Number of different combinations (order doesn't matter)

